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TURING MACHINES 

TMs finite, finite description. 

Model computation, and sophisticated 

methods. 

Theoretical model of a computing machine. 

As powerful as any other computer device. 

Has many properties… 
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PARTS OF A TM 

• Semi-infinite input tape, containing an input 

word (string). 

• Tape made of individual cells. 

• Cells hold a symbol from the tape alphabet 

. 

• Read-write head reads then           prints a 

symbol. 

• Then head shifts one cell left or right. 

• TM changes state internally. 
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TM DESCRIPTION 

7 TUPLE, M = (Q, , , , QO, B, QACCEPT) 

• Q [finite set of states] 

•  [gamma, the tape alphabet] 

• B  [the blank symbol, B  ] 

•  [sigma, the input alphabet] 

•  [delta, the transition function] 

• qo [initial state, qo  Q] 

• qaccept [accept state] 

• qreject [reject state] 

 



LIMITS TO TMS 

• There are limits to the power of TMs. 

• A TM continues until it reaches accept state, or 

reject state where it will halt. 

• If it never reaches one, then it continues computing 

forever. 

• There exists problems that TMs cannot solve. 

• These problems contain no effective procedure and 

no recursive computation exists. 

• The problems unsolvable by TMs are also 

unsolvable by any equivalent formal programming 

systems. 



INTRO TO THE HALTING PROBLEM 

• The best known problem that is unsolvable by a TM 

is the Halting Problem. 

• “Given an arbitrary Turing Machine T as input and 

equally arbitrary tape t, decide whether T halts on 

t.” 

• Basically TM that takes a TM, T as its input, and 

simulates the T running on input t, and returns or 

decides whether or not T halts on t. 

• Can a TM accept a TM as input? (important to 

understand) 

• 3 Examples. 



CAN A TM ACCEPT A TM AS INPUT? 

EXAMPLE 1. 

• Consider a Universal Turing Machine. 

• UTMs represent the set of all possible TMs, and all 

possible effective procedures. 

• UTMs take input in the form (dT, t).  

• UTMs mimics the action of an arbitrary TM, T by reading 

its description off the tape, and simulates its behavior on 

t. 

• Produces the same result as T. 

• Simple TMs can also take descriptions 

 of other TM as input. 
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CAN A TM ACCEPT A TM AS INPUT? 

EXAMPLE 2. 

 TMs can be encoded as words, (strings) for other 

TMs.   

 M = (Q, , , , qo, B, qaccept) 7-tuples, only 4 are 

important. 

 Represent finite set of states Q = {qo, q1, …} as a 

string in binary using unary conversion (n+1 ones 

represent n). 

 Represent  alphabet, 0, 1, move left, move right as a 

string of different size blocks of ones. 

 Represent current state and next state transitions as a 

string using unary conversion. 

 Use 0s as delimiters between strings. 

 These 4 strings together make one string, the 

description of T. 



CAN A PROGRAM ACCEPT A PROGRAM AS INPUT? 

EXAMPLE 3. 

• Yes as a string, consider the valid C program. 

 

 

 

 

• The string of a valid C program 

  input for another program. 

 

 

• Once compiled, this is translated to machine language, then 
translated to a string of 0s and 1s. 



MACHINE T AS INPUT AND EQUALLY 

ARBITRARY TAPE T, DECIDE WHETHER 

T HALTS ON T.” 
 

• Formulate a proof, suppose such a machine does exist, call it TH.  

• Let t be input for T.  

• Let T be encoded as a description for TH. 

• If T  accepts and halts on t, 

 then TH will give an equivalent  

 result and transfer to the halting 

 “yes” state. 

• If T does not halt on t, then TH will 

 transfer to the halting “no” state. 

• If TH exists, then we can construct 

 another machine TH’ by modifying 

 TH. 
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CONSTRUCT A NEW MACHINE TH’ 

• Add another machine Tc (or some 

 extra code) that makes a copy of 

 dT and hands it to TH’s initial 

 state. 

• Alter TH so that it decides if T  

 halts on dT rather than t. 

• TH‘s only job is to decide if T halts on dT. 

• If TH’ exists, then we can construct 

 another machine by modifying 

 TH’. 
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CONSTRUCT A NEW MACHINE TH’’ 

 Alter TH’’s two halting transitions so that the yes and 

no state are diverted to two new states. 

 The yes transition goes from 

 q1 to qn, once in qn it will never 

 halt (infinite loop). 

 The no transition goes from 

 q1 to qh a halting state. 
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THE HALTING PROBLEM 

 If TH’’ exists, then we can input its own 

description dTH’’. 

Case 1: If TH’’ halts on dTH’’ , then TH’’ does not 

halt on dTH’’ because of an endless loop. 

Case 2: If TH’’  does not halt on dTH’’ ,  

 then TH’’  does halt on dTH’’ . 

This contradicts that TH ever existed  

 in the first place. 

The Halting Problem is not solvable 

 by any TM. 
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THE HALTING PROBLEM IS NOT 

POSSIBLE IN C .  

• Assume a Halts() function exists. Input the c 
program from earlier into the function. 

 

• Imagine the function Halts(program, input). 

 

 

 

• If Halts exists it is guaranteed to return. 

 

 



THE HALTING PROBLEM IS NOT 

POSSIBLE IN C. 

• Observe the new program in C. Save the program as 
diagonal.c 

• Run diagonal and add its own source code as input. 

• Halts(diagonal, diagonal)  

 results in two cases. 

• Returns 0, then diagonal 

 loops forever, but this can only 

 happen if Halts returns 1. 

• Returns 1, then diagonal 

 halts, but this can only happen 

 if Halts returns 0. 

• This contradiction means the  

 Halts() function cannot exist. 



DIFFERENCE BETWEEN UTMS AND THE TM IN THE 

HALTING PROBLEM.  

• It’s true that UTMs can simulate the behavior of any arbitrary 
TM T on its input t (including itself), and get the same result as 
T. 

• Whether T halts and accepts, or halts and rejects, or runs 
infinitely a UTM will do the same. 

• But a UTM or any TM cannot decide, or return a result that 
says if an arbitrary T will halt on an arbitrary t. 

• The code for such a machine cannot exist because if it did, by 
the definition of the machine itself it should accept it’s own 
code and not contradict itself. 

 



QUESTIONS 

 How is a TM converted into input for another TM? 

 Why can’t we code Halts function in C? 
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