
THE HALTING PROBLEM

OVERVIEW

• Review TMs

• Parts of a TM

• Description of a TM

• Intro to Halting Problem

• Can a TM accept a TM as input?

• The Halting Problem Proof

• The Halting Problem is not possible in C

• UTMs and the TM in the Halting Problem

• References

TURING MACHINES

TMs finite, finite description.

Model computation, and sophisticated

methods.

Theoretical model of a computing machine.

As powerful as any other computer device.

Has many properties…

A1 A2 A3

An B
…

PARTS OF A TM

• Semi-infinite input tape, containing an input

word (string).

• Tape made of individual cells.

• Cells hold a symbol from the tape alphabet

.

• Read-write head reads then prints a

symbol.

• Then head shifts one cell left or right.

• TM changes state internally.

A1 A2 A3

An B
…

TM DESCRIPTION

7 TUPLE, M = (Q, , , , QO, B, QACCEPT)

• Q [finite set of states]

•  [gamma, the tape alphabet]

• B [the blank symbol, B  ]

•  [sigma, the input alphabet]

•  [delta, the transition function]

• qo [initial state, qo  Q]

• qaccept [accept state]

• qreject [reject state]

LIMITS TO TMS

• There are limits to the power of TMs.

• A TM continues until it reaches accept state, or

reject state where it will halt.

• If it never reaches one, then it continues computing

forever.

• There exists problems that TMs cannot solve.

• These problems contain no effective procedure and

no recursive computation exists.

• The problems unsolvable by TMs are also

unsolvable by any equivalent formal programming

systems.

INTRO TO THE HALTING PROBLEM

• The best known problem that is unsolvable by a TM

is the Halting Problem.

• “Given an arbitrary Turing Machine T as input and

equally arbitrary tape t, decide whether T halts on

t.”

• Basically TM that takes a TM, T as its input, and

simulates the T running on input t, and returns or

decides whether or not T halts on t.

• Can a TM accept a TM as input? (important to

understand)

• 3 Examples.

CAN A TM ACCEPT A TM AS INPUT?

EXAMPLE 1.

• Consider a Universal Turing Machine.

• UTMs represent the set of all possible TMs, and all

possible effective procedures.

• UTMs take input in the form (dT, t).

• UTMs mimics the action of an arbitrary TM, T by reading

its description off the tape, and simulates its behavior on

t.

• Produces the same result as T.

• Simple TMs can also take descriptions

 of other TM as input.

descrption of T input t

B
…

CAN A TM ACCEPT A TM AS INPUT?

EXAMPLE 2.

 TMs can be encoded as words, (strings) for other

TMs.

 M = (Q, , , , qo, B, qaccept) 7-tuples, only 4 are

important.

 Represent finite set of states Q = {qo, q1, …} as a

string in binary using unary conversion (n+1 ones

represent n).

 Represent  alphabet, 0, 1, move left, move right as a

string of different size blocks of ones.

 Represent current state and next state transitions as a

string using unary conversion.

 Use 0s as delimiters between strings.

 These 4 strings together make one string, the

description of T.

CAN A PROGRAM ACCEPT A PROGRAM AS INPUT?

EXAMPLE 3.

• Yes as a string, consider the valid C program.

• The string of a valid C program

 input for another program.

• Once compiled, this is translated to machine language, then
translated to a string of 0s and 1s.

MACHINE T AS INPUT AND EQUALLY

ARBITRARY TAPE T, DECIDE WHETHER

T HALTS ON T.”

• Formulate a proof, suppose such a machine does exist, call it TH.

• Let t be input for T.

• Let T be encoded as a description for TH.

• If T accepts and halts on t,

 then TH will give an equivalent

 result and transfer to the halting

 “yes” state.

• If T does not halt on t, then TH will

 transfer to the halting “no” state.

• If TH exists, then we can construct

 another machine TH’ by modifying

 TH.

 dT t

B
…

true
ye

s
no

q1

CONSTRUCT A NEW MACHINE TH’

• Add another machine Tc (or some

 extra code) that makes a copy of

 dT and hands it to TH’s initial

 state.

• Alter TH so that it decides if T

 halts on dT rather than t.

• TH‘s only job is to decide if T halts on dT.

• If TH’ exists, then we can construct

 another machine by modifying

 TH’.

 dT

B
…

true
ye

s
no

TC

TH’

d

T

q1

CONSTRUCT A NEW MACHINE TH’’

 Alter TH’’s two halting transitions so that the yes and

no state are diverted to two new states.

 The yes transition goes from

 q1 to qn, once in qn it will never

 halt (infinite loop).

 The no transition goes from

 q1 to qh a halting state.

 dT

B
…

true
ye

s
no

TH’’

d

T

q1

qh qn

THE HALTING PROBLEM

 If TH’’ exists, then we can input its own

description dTH’’.

Case 1: If TH’’ halts on dTH’’ , then TH’’ does not

halt on dTH’’ because of an endless loop.

Case 2: If TH’’ does not halt on dTH’’ ,

 then TH’’ does halt on dTH’’ .

This contradicts that TH ever existed

 in the first place.

The Halting Problem is not solvable

 by any TM.

 dTH’’

B

true
ye

s
no

d

T

q1

qh qn

…

2

1

THE HALTING PROBLEM IS NOT

POSSIBLE IN C .

• Assume a Halts() function exists. Input the c
program from earlier into the function.

• Imagine the function Halts(program, input).

• If Halts exists it is guaranteed to return.

THE HALTING PROBLEM IS NOT

POSSIBLE IN C.

• Observe the new program in C. Save the program as
diagonal.c

• Run diagonal and add its own source code as input.

• Halts(diagonal, diagonal)

 results in two cases.

• Returns 0, then diagonal

 loops forever, but this can only

 happen if Halts returns 1.

• Returns 1, then diagonal

 halts, but this can only happen

 if Halts returns 0.

• This contradiction means the

 Halts() function cannot exist.

DIFFERENCE BETWEEN UTMS AND THE TM IN THE

HALTING PROBLEM.

• It’s true that UTMs can simulate the behavior of any arbitrary
TM T on its input t (including itself), and get the same result as
T.

• Whether T halts and accepts, or halts and rejects, or runs
infinitely a UTM will do the same.

• But a UTM or any TM cannot decide, or return a result that
says if an arbitrary T will halt on an arbitrary t.

• The code for such a machine cannot exist because if it did, by
the definition of the machine itself it should accept it’s own
code and not contradict itself.

QUESTIONS

 How is a TM converted into input for another TM?

 Why can’t we code Halts function in C?

REFERENCES

• Dewdney, A. K. The New Turing Omnibus. 2001. New York.
Chapter 59 “The Halting Problem.”

• Greenlaw, R., Hoover, H. James. Fundamentals of Theory of
Computation. Morgan Kaufmann Publishers, Inc. 1998. San
Francisco, California. Chapter 1 “Some Computing Puzzles.”

• Homer, S., Selman, Alan L. Computability and Complexity
Theory. Texts in Computer Science. 2001 Springer-Verlag
New York, Inc. Chapter 1 “Introduction to Computability,” and
Chapter 3 “Undecidability.”

• Stanford Encyclopedia of Philosophy. Feb. 01, 2008.

 <http://plato.stanford.edu/entries/turing-machine/>

http://plato.stanford.edu/entries/turing-machine/
http://plato.stanford.edu/entries/turing-machine/
http://plato.stanford.edu/entries/turing-machine/
http://plato.stanford.edu/entries/turing-machine/

