@ THE HALTING PROBLEM

OVERVIEW

Review TMs

Parts of a TM

Description of a TM

Intro to Halting Problem

Can a TM accept a TM as input?

The Halting Problem Proof

The Halting Problem is not possible in C
UTMs and the TM in the Halting Problem
References

TURING MACHINES

TMs finite, finite description.

Model computation, and sophisticated
methods.

Theoretical model of a computing machine.

As powerful as any other;q%é niiter dm/'r‘?.

B
D

Has many properties... ™~ e{}%

PARTS OF A TM

Semi-infinite input tape, containing an input
word (string).
Tape made of individual cells.

Cells hold a symbol from the tape alphabet
I.

Read-write head reads then prr#‘fﬂr{m

symbol. A
Then head shifts one cell left or right.
TM changes state internally.

C
1
K

TM DESCRIPTION
7 TUPLE, M = (Q, 2, T, 0, Qg, B, Qaccept)

Q [finite set of states]

I’ [gamma, the tape alphabet]
B [the blank symbol, B € I']

> [sigma, the input alphabet]

o0 [delta, the transition function]
g, [initial state, q, € Q]

accept [accept state]

Oreject [reject state]

LIMITS TO TMS

There are limits to the power of TMs.

A TM continues until it reaches accept state, or
reject state where it will halt.

If it never reaches one, then it continues computing
forever.

There exists problems that TMs cannot solve.

These problems contain no effective procedure and
No recursive computation exists.

The problems unsolvable by TMs are also
unsolvable by any equivalent formal programming
systems.

INTRO TO THE HALTING PROBLEM

The best known problem that is unsolvable by a TM
IS the Halting Problem.

“Given an arbitrary Turing Machine T as input and
equally arbitrary tape t, decide whether T halts on
t_”

Basically TM that takes a TM, T as its input, and
simulates the T running on input t, and returns or
decides whether or not T halts on t.

Can a TM accept a TM as input? (important to
understand)

3 Examples.

CANA TM ACCEPT A TM AS INPUT?
EXAMPLE 1.

Consider a Universal Turing Machine.

UTMs represent the set of all possible TMs, and all
possible effective procedures.

UTMs take input in the form (dT, t).

UTMs mimics the action of an arbitrary TM, T by reading
its description off the tape, and simulates its behavior on

1 o L - &
L. OESCIrption ol IIIPULF

Produces the same result as T. o _ IAI N
Simple TMs can also take descriptions
of other TM as input.

CAN A TM ACCEPT A TM AS INPUT?
EXAMPLE 2.

TMs can be encoded as words, (strings) for other
TMS.

M=(Q, 2, T, 6, dy, B, Qaecepr) 7-tUples, only 4 are
Important.

Represent finite set of states Q ={q,, d;, ...} as a
string in binary using unary conversion (n+1 ones
represent n).

Represent I alphabet, O, 1, move left, move right as a
string of different size blocks of ones.

Represent current state and next state transitions as a
string using unary conversion.

Use Os as delimiters between strings.
These 4 strings together make one string, the

AAacAarimtinn nf T

CAN A PROGRAM ACCEPT A PROGRAM AS INPUT?
EXAMPLE 3.

Yes as a string, consider the valid C program.

volid mwain () 4
int i = 0:
int a:

gcant (54", al: SSread in the wvalue of a
while (i > a) { //if & i= less than 0 loop forewver

i=a+1; //do the samse computation owver and owver
The St h ff1if & iz greater than 0 do not enter
¥ Aiend

Input for another program.

Once compiled,. this is translated to machine lanauaae, then

trarchar *program = "void main () { int i = 0; int a; scanf("sd",
while (1 > a) { 1 =a + 1; } }";

£a) ;

IVIACLMINE 1 AS INFU I AND EYUALLY
ARBITRARY TAPE T, DECIDE WHETHER

T HALTSON T.”

Formulate a proof, suppose such a machine does exist, call it T,,.
Let t be input for T.

Let T be encoded as a description for T,.

If T accepts and halts on t,

then T, will give an equivalent O
result and transfer to the halting
“yes” state.

If T does not halt on t, then T, will
transfer to the halting “no” state.

If T, exists, then we can construct
another machine T, by modifying

The =

©

CONSTRUCT A NEW MACHINE T,

- Add another machine T, (or some
extra code) that makes a copy of
dT and hands it to T,,'s initial
state.

- Alter T, so that it decides if T

halts on dT rather than t.

- Ty's only job is to decide if T halts on dT.
If T\, exists, then we can construct
another machine by modifying
Ty

CONSTRUCT A NEW MACHINE T

o Alter T,,'s two halting transitions so that the yes and
no state are diverted to two new states.

o The yes transition goes from -

g, to g,, once in g, it will never
halt (infinite loop).

o The no transition goes from
g, to g;, a halting state.

THE HALTING PROBLEM

If T,,» exists, then we can input its own
description dT,-

Case 1: If T,»halts on dT,., then T4—°'“‘-'°‘0*TH”

halt on dT,- because of an endless I%op.e{}%
Case 2: If T,»_does not halt on dT-,
then T, does halt on dT,»

This contradicts that T, ever existed
In the first place.

The Halting Problem is not solvable
by any TM.

THE HALTING PROBLEM IS NOT
POSSIBLE IN C .

- Assume a Halts() function exists. Input the c
program from earlier into the function.

char ¥program = "woid wain () {4 int 1 = 0; int a; scanf("xd4d", &a):

while (i > a) { i =a + 1; + }';
- Imag.... =iz al Lisarli il

// Halts(P, I) == 1 if string P is a wvalid C program

/7 that eventually halts when reading
/7 input I.

/7 == (0 otherwise

- If Halts e;

int Halts(char *P; char *I):
// <Insert source code of Halts here.>
// <Imagine halts functions like a compiler.>

Halts (program, "1"); //returns 1
Halts (program, "-1"): //returns O

THE HALTING PROBLEM IS NOT
POSSIBLE IN C.

Observe the new program in C. Save the program as
diagonal.c

Run diagonal and add its own source code as input.

.) M/ Halta(P, I) == 1 if string P iz & valid C program
HaItS(dlagonal, d|agonal) H that eventually halts when reading
results in two cases. i tput 1.

_ L == (1 ptherwise
Returns 0O, then diagonal void main () {
. ffread all of the input sStream

IOOpS fOI’eveI’, but th|S can Only Sfmacant iz guarenteed to return

. char *program:
happen If Halts returns 1 macant (":s", &program); J/input huffer
Returns 1, then diagonal | __

' if({ Halt=| prograwm , progrsem | == 1 1 {

halts, but this can only happen shilelli
. inrinite oo
If Halts returns O. }

This contradiction means the
Halts() function cannot exist.

DIFFERENCE BETWEEN UTMS AND THE TM IN THE
HALTING PROBLEM.

It's true that UTMs can simulate the behavior of any arbitrary
TM T on its input t (including itself), and get the same result as
T.

Whether T halts and accepts, or halts and rejects, or runs
infinitely a UTM will do the same.

But a UTM or any TM cannot decide, or return a result that
says If an arbitrary T will halt on an arbitrary t.

The code for such a machine cannot exist because if it did, by
the definition of the machine itself it should accept it's own
code and not contradict itself.

QUESTIONS

How is a TM converted into input for another TM?
Why can’t we code Halts function in C?

REFERENCES

Dewdney, A. K. The New Turing Omnibus. 2001. New York.
Chapter 59 “The Halting Problem.”

Greenlaw, R., Hoover, H. James. Fundamentals of Theory of
Computation. Morgan Kaufmann Publishers, Inc. 1998. San
Francisco, California. Chapter 1 “Some Computing Puzzles.”

Homer, S., Selman, Alan L. Computability and Complexity
Theory. Texts in Computer Science. 2001 Springer-Verlag
New York, Inc. Chapter 1 “Introduction to Computability,” and
Chapter 3 “Undecidability.”

Stanford Encyclopedia of Philosophy. Feb. 01, 2008.
<http://plato.stanford.edu/entries/turing-machine/>

http://plato.stanford.edu/entries/turing-machine/
http://plato.stanford.edu/entries/turing-machine/
http://plato.stanford.edu/entries/turing-machine/
http://plato.stanford.edu/entries/turing-machine/

